在线客服
  • |
  • 400-821-8800
  • |
  • 手机西域
    手机西域下载二维码

    开发者:西域智慧供应链(上海)股份公司

    版本:4.6.8

    扫一扫,下载西域客户端
    手机采购 移动办公
    iPhone Android
  • |
  • 快速下单
  • |
  • 我的西域
  • 开关电源教程14半桥式变压器开关电源工作原理

    文/ 发布于2018-06-05 浏览次数:2226

      半桥式变压器开关电源也属于双激式变压器开关电源,从原理上来说,半桥式变压器开关电源也属于推挽式变压器开关电源,它是多种推挽式变压器开关电源家庭成员之一。在半桥式变压器开关电源中,也是两个控制开关K1和K2轮流交替工作,开关电源在整个工作周期之内都向负载提供功率输出,因此,其输出电流瞬间响应速度很高,电压输出特性也很好。

      由于半桥式变压器开关电源的两个开关器件工作电压只有输入电压的一半,因此,半桥式变压器开关电源比较适用于工作电压比较高的场合。

      图1-36是交流输出半桥式变压器开关电源的工作原理图。图中,K1、K2是两个控制开关,它们工作的时候,总是一个接通,另一个关断,两个控制开关轮流交替工作;电容器C1、C2是储能滤波电容,同时也是电源分压电容,它们把电源电压一分为二;一个充满电的电容,我们可以把它看成是一个电源,因此,我们可以把电容器C1、C2看成是两个电源串联对变压器负载供电;T为开关变压器,N1为变压器的初级线圈,N2为变压器的次级线圈,Ui为直流输入电压,R为负载电阻;uo为输出电压,io为流过负载的电流。

      从图1-36原理图中可以看出,电容器C1和C2与控制开关K1和K2正好组成一个电桥的两臂,变压器作为负载被跨接于电桥两臂的中间。但由于电容器C1和C2的参数或电压基本上没有跟随控制开关K1和K2的导通和截止同步变动,并且在实际应用中为了节省成本,经常只使用一个电容器C1或C2,因此,我们把图1-36的电路称为半桥式开关电源电路,或半桥式变压器开关电源。

      图1-36中,电容器C1、C2首先要被输入电源Ui充电,两个充满电的电容器相当于两个电源串联。当控制开关K1接通时,电容器C1两端的电压被加到变压器初级线圈N1绕组的a、b两端,电容器C1将通过变压器初级线圈N1绕组进行放电;同时,由于互感的作用在变压器次级线圈N2绕组的两端也会输出一个与N1绕组输入电压成正比的电压,并加到负载R的两端,使开关电源输出一个正半周电压。

      当控制开关K1由接通转为关断时,控制开关K2则由关断转为接通,电容器C2两端的电压被加到变压器初级线圈N1绕组的b、a两端,电容器C2也将通过变压器初级线圈N1绕组进行放电;同理,由于电磁感应的作用在变压器次级线圈N2绕组的两端也会输出一个与N1绕组输入电压成正比的电压,并加到负载R的两端,使开关电源输出一个负半周电压。

      由于电容器C1放电电流的方向正好与电容器C2放电电流的方向相反,因此,在变压器次级线圈N2绕组的两端输出电压uo是一个脉冲宽度与控制开关K1(或K2)接通时间对应的方波。

      由于输入电源Ui直接与串联电容器C1和C2连接在一起,因此,在任一时刻,当一个电容器在进行放电的时候,另一个电容器就会进行充电,两个电容器充、放电的电荷总是相等。

      下面我们进一步详细分析半桥式变压器开关电源的工作原理。

      图1-36中,输入电源Ui首先对电容器C1、C2进行充电,当控制开关K1接通时,电容器C1两端的电压被加到变压器初级线圈N1绕组的两端,电容器C1将通过变压器初级线圈N1绕组进行放电。电流从变压器初级线圈N1绕组的两端经过,通过电磁感应会在变压器的铁心中产生磁场,并产生磁力线;同时,在初级线圈N1绕组的两端要产生自感电动势e1,在次级线圈N2绕组的两端也会产生感应电动势e2;感应电动势e2作用于负载R的两端,从而产生负载电流。

      因此,在初、次级电流的共同作用下,在变压器的铁心中会产生一个由流过变压器初、次级线圈电流产生的合成磁场,这个磁场的大小可用磁力线通量(简称磁通量),即磁力线的数目Φ 来表示。

      如果用Φ1来表示变压器初级线圈N1绕组电流产生的磁通量,用Φ2来表示变压器次级线圈电流产生的磁通量,由于变压器初、次级线圈电流产生的磁场方向总是相反,则在控制开关K1接通期间,由流过变压器初、次级线圈电流在变压器铁心中产生的合成磁场的总磁通量 为:

      Φ=Φ1-Φ2 —— K1接通期间 (1-155)

      其中变压器初级线圈电流产生的磁通Φ1还可以分成两个部分,一部分用来抵消变压器次级线圈电流产生的磁通Φ2,记为&

      Phi;10,另一部分是由励磁电流产生的磁通,记为ΔΦ1。显然Φ10=-Φ2,ΔΦ1=Φ 。即:变压器铁心中产生的磁通量 ,只与流过变压器初级线圈中的励磁电流有关,与流过变压器次级线圈中的电流无关;流过变压器次级线圈中的电流产生的磁通,完全被流过变压器初级线圈中的另一部分电流产生的磁通抵消。

      根据电磁感应定律可以对变压器初级线圈N1绕组回路列出方程:

      e1=N1*dΦ/dt=Uab —— K1接通期间 (1-156)

      上式中,e1为变压器初级线圈产生的电动势, Uab为电源加于变压器初级线圈N1绕组两端的电压,Uab=Ui/2 , dΦ/dt为变压器铁心中磁通的变化率。这里我们假定电容器C1或C2两端的电压在K1接通期间基本保持不变,其两端电压正好等于输入电压Ui的二分之一。

      同样,可以对变压器次级线圈N2绕组回路列出方程:

      e2=N2 *dΦ/dt=(Up)—— K1接通期间 (1-157)

      上式中,(Up)为开关变压器次级线圈N2绕组正激输出电压的幅值,用括弧匡住来表示。由于流过开关变压器初级线圈N1绕组的励磁电流或开关变压器铁心中的磁通是线性变化的,所以我们可认为开关变压器次级线圈N2绕组正激输出电压是一个方波。方波的幅值Up与半波平均值Upa以及有效值Uo三者完全相等。

      根据(1-156)式和(1-157)式可以求得:

      (Up)=e2=ne1=nUi/2 —— K1接通期间 (1-158)

      (1-158)式就是半桥式变压器开关电源正激输出时的电压关系式。上式中,(Up)为开关变压器次级线圈N2绕组正激输出电压的幅值;Ui为开关电源变压器初级线圈N1绕组的输入电压;n为变压器次、初级线圈的变压比,即:开关变压器次级线圈输出电压与初级线圈输入电压之比,n也可以看成是开关变压器次级线圈N2绕组与初级线圈N1绕组的匝数比,即:n=N2/N1。

      由此可知,在控制开关K1接通期间,半桥式变压器开关电源变压器次级输出的正激电压幅值只与输入电压和变压器的次/初级变压比有关系。

      同理我们也可以求得,当控制开关K2接通时,开关变压器N2线圈绕组输出的正激电压幅值(Up-)为:

      (Up-)=-e2=-ne1=-nUi/2 —— K2接通期间 (1-159)

      上式中的负号表示e2的符号与(1-158)中的符号相反,(Up-)表示与(Up)的极性相反,因为Uab=-Uba 。

      这里还需指出,(1-158)式和(1-159)式列出的计算结果,并没有考虑控制开关K1或K2关断瞬间,励磁电流存储的能量产生反电动势的影响。当控制开关K1或K2关断瞬间,流过开关变压器初级线圈的励磁电流由最大值突然下降为零,使开关变压器铁心中的磁通量也要跟着产生变化;即:开关变压器的初、次级线圈中都会产生感应电动势,这种感应电动势是励磁电流存储于关变压器铁心中的磁能量产生的;这种感应电动势对于变压器次级线圈电压输出绕组来说,属于反激式输出。即:半桥式变压器开关电源同时存在正、反激电压输出。

      反激式电压产生的原因是因为K1或K2接通瞬间变压器初级或次级线圈中的电流初始值不等于零,或磁通的初始值不等于零。

      实际上,半桥式变压器开关电源的反激式输出电压部分是不能忽略的。半桥式变压器开关电源变压器次级线圈的输出电压应该同时包括两部分,正激输出电压和反激输出电压。

      因此,图1-36中,当控制开关K1关断,K2接通瞬间,开关变压器次级线圈输出电压应该等于正激电压与反激电压之和。正激电压的计算可由(1-158)和(1-159)式给出,反激电压的计算可由(1-67)或(1-68)式给出。关于纯电阻负载反激式输出电压的计算,请参考前面《1-5-1.单激式变压器开关电源的工作原理》章节中的相关内容分析,这里不再赘述。

      根据(1-67)式

      上式中,[uo] 表示开关变压器次级线圈N2绕组输出的反激式电压,[i2] 表示开关变压器次级线圈N2绕组输出反激式电压对负载R产生的电流。

      另外根据(1-159)式求得的结果,开关变压器次

      级线圈N2绕组产生的正激式输出电压为:

      (uo)=-ne1=-nUi/2 —— K2接通期间 (1-161)

      上面两式中,[uo] 表示开关变压器次级线圈N2绕组产生的反激式输出电压,(uo)表示开关变压器次级线圈N2绕组产生的正激式输出电压。

      因此,开关变压器次级线圈输出电压uo等于正激电压(uo)与反激电压[uo]之和,即:

      (1-162)式就是半桥式变压器开关电源在负载为纯电阻时,输出电压uo的表达式。由(1-162)式可以看出,当t=0时,即:控制开关K1关断瞬间,输出电压有最大值:

      从(1-163)式可以看出,在控制开关K1关断瞬间,当变压器次级线圈回路负载开路,或负载很轻的时候,变压器次级线圈回路会产生非常高的反电动势。

      但在实际应用中,并不完全是这样。因为,当控制开关K1关断瞬间,控制开关K2也会同时接通,此时开关变压器初级线圈N1绕组同时也被接到另一个电路中,即:原来K1接通时,由C1电源(充满电后的电容可看成是一个电源)对开关变压器初级线圈N1绕组进行供电,现在K2接通后,转换成由C2电源对开关变压器初级线圈N1绕组进行供电。

      当K2刚接通的瞬间,N1绕组产生的反电动势正好与C2电源电压的方向相反,因此,在K2接通瞬间,C2电源不是马上对开关变压器初级线圈N1绕组进行供电,而是N1绕组产生的反电动势首先对电容器C2进行充电;相当于在控制开关K2接通瞬间,开关变压器初级线圈N1绕组存储的磁能量有一部分要被电容器C2吸收,待反电动势的能量基本被吸收完后,电容器C2才开始对变压器初级线圈N1绕组供电。

    免责声明:文章仅供学习和交流,如涉及作品版权问题需要我方删除,请联系我们,我们会在第一时间进行处理。
    相关资讯
    沪公网安备 31011502008645号 | 沪ICP备09003861号 | 增值电信业务经营许可证:合字B2-20200044 | 第二类医疗器械经营备案编号:沪浦药监械经营备20200151号 | 医疗器械经营许可证编号:沪浦药监械经营许20200092号 | 互联网药品信息服务资格证书编号:(沪)-经营性-2020-0028 | 危险化学品经营许可证:沪(浦)应急管危经许[2022]204062(DYS)